Systolic growth of linear groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation Growth of Linear Groups

Let Γ be a group and rn(Γ) the number of its n-dimensional irreducible complex representations. We define and study the associated representation zeta function ZΓ(s) = ∞ ∑ n=1 rn(Γ)n . When Γ is an arithmetic group satisfying the congruence subgroup property then ZΓ(s) has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta function” counting the rational rep...

متن کامل

The Growth of Linear Groups

Let G be a group generated by a finite subset S; define S to be the set Ž . < n < of all products of at most n elements of S, and let a S s S be the n n Ž . Ž . Ž . Ž . number of elements in S . As a S satisfies 1 F a S F a S ? a S , n nqm n m Ž .1r n Ž . Ž .1r n the limit lim a S exists, and a S s lim a S G 1. Although the n n Ž . exact value of a S depends on the generating set S, it is well ...

متن کامل

Representation Growth for Linear Groups

Let Γ be a group and rn(Γ) the number of its n-dimensional irreducible complex representations. We define and study the associated representation zeta function ZΓ(s) = ∞ ∑ n=1 rn(Γ)n . When Γ is an arithmetic group satisfying the congruence subgroup property then ZΓ(s) has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta function” counting the rational rep...

متن کامل

Boundaries of systolic groups

For all systolic groups we construct boundaries which are EZ–structures. This implies the Novikov conjecture for torsion–free systolic groups. The boundary is constructed via a system of distinguished geodesics in a systolic complex, which we prove to have coarsely similar properties to geodesics in CAT (0) spaces. MSC: 20F65; 20F67; 20F69;

متن کامل

EG for systolic groups

We prove that if a group G is systolic, i.e. if it acts properly and cocompactly on a systolic complex X, then an appropriate Rips complex constructed from X is a finite model for EG.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2015

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc12747